β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis

نویسندگان

  • Joseph Rosenbluh
  • Deepak Nijhawan
  • Andrew G. Cox
  • Xingnan Li
  • James T. Neal
  • Eric J. Schafer
  • Travis I. Zack
  • Xiaoxing Wang
  • Aviad Tsherniak
  • Anna C. Schinzel
  • Diane D. Shao
  • Steven E. Schumacher
  • Barbara A. Weir
  • Francisca Vazquez
  • Glenn S. Cowley
  • David E. Root
  • Jill P. Mesirov
  • Rameen Beroukhim
  • Calvin J. Kuo
  • Wolfram Goessling
  • William C. Hahn
چکیده

Wnt/β-catenin signaling plays a key role in the pathogenesis of colon and other cancers; emerging evidence indicates that oncogenic β-catenin regulates several biological processes essential for cancer initiation and progression. To decipher the role of β-catenin in transformation, we classified β-catenin activity in 85 cancer cell lines in which we performed genome-scale loss-of-function screens and found that β-catenin active cancers are dependent on a signaling pathway involving the transcriptional regulator YAP1. Specifically, we found that YAP1 and the transcription factor TBX5 form a complex with β-catenin. Phosphorylation of YAP1 by the tyrosine kinase YES1 leads to localization of this complex to the promoters of antiapoptotic genes, including BCL2L1 and BIRC5. A small-molecule inhibitor of YES1 impeded the proliferation of β-catenin-dependent cancers in both cell lines and animal models. These observations define a β-catenin-YAP1-TBX5 complex essential to the transformation and survival of β-catenin-driven cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin D3-dependent VDR signaling delays ron-mediated breast tumorigenesis through suppression of β-catenin activity

The Ron receptor is upregulated in human breast cancers and correlates with enhanced metastasis and reduced patient survival. Ron overexpression drives mammary tumorigenesis through direct β-catenin activation and augmented tumor cell proliferation, migration and invasion. Ron and β-catenin are also coordinately elevated in breast cancers. The vitamin D receptor (VDR) antagonizes β-catenin sign...

متن کامل

Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells

In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating...

متن کامل

Unraveling the expression of the oncogene YAP1, a Wnt/beta-catenin target, in adrenocortical tumors and its association with poor outcome in pediatric patients

BACKGROUND Overexpression of the oncogene yes-associated-protein-1 (YAP1) is associated with increased cell proliferation in human cancers. YAP1 is a potential target of the Wnt/beta-catenin pathway, which plays an important role in adrenocortical tumors (ACT). The role of YAP1 in adrenocortical tumorigenesis has not been assessed. AIMS To evaluate YAP1 expression in normal adrenals and pedia...

متن کامل

Oncogenic KRAS signaling and YAP1/β-catenin: Similar cell cycle control in tumor initiation.

Why are YAP1 and c-Myc often overexpressed (or activated) in KRAS-driven cancers and drug resistance? Here, we propose that there are two independent pathways in tumor proliferation: one includes MAPK/ERK and PI3K/A kt/mTOR; and the other consists of pathways leading to the expression (or activation) of YAP1 and c-Myc. KRAS contributes through the first. MYC is regulated by e.g. β-catenin, Notc...

متن کامل

Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance.

Ablation of the kinases Mst1 and Mst2, orthologs of the Drosophila antiproliferative kinase Hippo, from mouse intestinal epithelium caused marked expansion of an undifferentiated stem cell compartment and loss of secretory cells throughout the small and large intestine. Although median survival of mice lacking intestinal Mst1/Mst2 is 13 wk, adenomas of the distal colon are common by this age. D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 151  شماره 

صفحات  -

تاریخ انتشار 2012